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Abstract 

A method previously developed to solve large-scale linear systems is applied to statistical 

Stark broadened line shape calculations. The method is formally exact, numerically stable, and 

allows optimization of the integration over the quasi-static field to assure numerical accuracy. 

Furthermore, the method does not increase the computational effort and often can decrease it 

compared to the conventional approach. 
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1. Introduction 

In standard Stark broadening theory of spectral lines, the perturbing ions are assumed to have 

negligible motion during the average lifetime of the radiating states [1,2]. In this theory an atom 

or ion (henceforth the radiator) emits or absorbs radiation in a statistical fluctuating electric field 

produced by the slow-moving ions. Thus, the line shape involves averaging the Stark state mixing 

and level splitting over the probability distribution for the quasi-static field [3,4]. In the absence 

of external fields to define a preferred direction, the line shape can be written in the form [1-4], 

 

€ 

I ω( ) = dε
o

∞
∫ P ε( )J ω;ε( )  (1.1) 

where   

€ 

ω  is the energy of the emitted or absorbed photon, 

€ 

P ε( )  is the probability of finding a 

Stark field of magnitude 

€ 

ε at the radiator, and 

€ 

J ω;ε( ) represents the line shape due to electron-

radiator interactions in the presence of this field. 

The numerical evaluation of the line shape replaces the integral in Eq. (1.1) with the sum 

 

€ 

I ω( ) = wiP εi( )J ω;εi( )
i=1

Nε
∑  (1.2) 

where  is the number of field points and 

€ 

wi
 
are weights that depend on the integration scheme. 

The calculation of Eq. (1.2) poses a challenge when selecting the field mesh. Firstly, for the 

integration to yield accurate results the mesh must resolve any narrow features in 

€ 

J ω;ε( ). Since 

the structure of 

€ 

J ω;ε( ) is usually not known a priori, a large number of field points are required. 

Secondly, the conventional method involves an explicit matrix inversion [5-8], which is 

computationally expensive for large matrices, scaling as 

€ 

m3 operations for a matrix of size 

€ 

m  [9], 

so there is a premium for defining a mesh with a large number of points. 

Often the practical resolution of these contending needs, even for simple one- or two-electron 

radiators, is a fixed mesh that is sparsely spaced at large field values compromising the accuracy 

of the integration; particularly in the line wings [10]. Similar compromises are made for line 

shape calculations of multi-electron systems [10,11] and possible errors from inadequate field 

meshes may be difficult to identify due to the complexity of the spectrum. 

The purpose here is to apply an approach previously developed for large-scale linear systems 

[12,13] to statistical Stark line broadening. The method is exact in principle, numerically stable, 

and reveals the resonant structure of 

€ 

J ω;ε( ) through a dispersion formula allowing optimization 
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of the numerical integration over the Stark field at each photon frequency. Furthermore, the 

computational speed for the proposed method is equal to or faster than the conventional approach. 

The discussion begins with a brief introduction to Stark line broadening theory in Section 2. 

Then descriptions of two related methods are given in Sections 3 and 4, respectively, followed by 

a numerical example in Section 5. Conclusions are offered in the last section. 

2. Stark broadening theory 

The field-dependent line shape function appearing in standard Stark-broadening theory in 

Eq. (1.1) can be written in the form [1,2,5-8] 

 

  

€ 

J ω;ε( ) = −π−1 ImTr
 
d ⋅ R ω;ε( )ρ

 
d { }

= −π−1 ImTr
 
d ⋅  x ω;ε( ){ }

 (2.1) 

where 

€ 

Tr  denotes a trace over the radiator internal states with 

€ 

ρ  and   

€ 

 
d  the radiator density 

matrix and dipole operators, respectively. The resolvent is defined by its inverse 

 

€ 

R−1 ω;ε( ) = A ω( ) −εB  (2.2) 

where the field independent contribution to the line shape is given by 

 

€ 

A ω( ) = Δω −Φ ω( ) , (2.3) 

 

€ 

Δωy = ω −H,y[ ] , (2.4) 

and the matrix coefficient to the quasi-static field is 

 
  

€ 

By = −1 dz ,y[ ] . (2.5) 

Here, y is an arbitrary operator in the radiator subspace, 
  

€ 

,[ ] denotes a commutator, 

€ 

H  is the 

Hamiltonian for the internal states of the radiator, and the electric field has been chosen along the 

z-axis. The “width and shift” operator, 

€ 

Φ ω( ) , contains the plasma electron contribution to the 

relaxation processes of the radiator states [1,2]. 

The evaluation of the line shape requires radiator energy levels and reduced dipole matrix 

elements usually obtained from atomic data calculations [14-16]. With these data, together with 

the description for electron collisional excitations, the matrices above are constructed. The 

calculation usually proceeds with an explicit matrix inversion to obtain 

€ 

R ω;ε( )  [1,2]. Thus, for 

each block of size 

€ 

m  the total count of complex number operations at a given frequency is 

 

€ 

Ni = Nεm
3 (2.6) 

Incidentally, Eq. (2.1) introduced the vector 
  

€ 

 x ω;ε( )  that satisfies the system of equations 
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€ 

R−1 ω;ε( )  x ω;ε( ) = ρ
 
d  (2.7) 

and is amenable to a variety of techniques. For example, solution of Eq. (2.7) by LU factorization 

of 

€ 

R−1 ω;ε( )  is 3 times faster than explicit inversion to obtain 

€ 

R ω;ε( )  [9]. 

The form of 

€ 

R−1 ω;ε( )  in Eq. (2.2) is suitable for techniques previously developed in large-

scale linear systems [12,13] where the quasi-static Stark field is the independent variable. Two 

approaches are discussed below. The first is based on the eigenvector decomposition and serves to 

illustrate the advantages of these methods. The second relies on the Hessenberg decomposition, 

which for large matrices is preferred since it is numerically faster and stable compared to the 

eigenvector approach. 

3. Eigenvector decomposition 

The method relies on the eigenvector decomposition of Eq. (2.7), but not of 

€ 

R−1 ω;ε( )  as was 

done formally in the past [6]. The approach exploits the functional form in Eq. (2.2) to extract the 

field dependence of 

€ 

J ω;ε( ) in an efficient manner. 

3.1 Method 

For each frequency and each 

€ 

m ×m  diagonal block, rewrite the trace in the field-dependent 

line shape expression, (in the following the 

€ 

ω  dependence is suppressed for brevity) 

 

  

€ 

Tr
 
d ⋅ A −εB[ ]−1ρ

 
d { } =

 
d *( )

T
⋅ I −εC[ ]−1A−1ρ

 
d 

=
 
d *( )T P ⋅  v ε( )

 (3.1.1) 

where on the right hand side the trace was performed and the notation implies matrix algebra in 

“line space” [1,2]. Then 

€ 

I  is the identity matrix and superscript T denotes transpose in line space, 

while 

€ 

* denotes Hermitian conjugate in the radiator subspace. The vector 
  

€ 

 v ε( )  satisfies 

 
  

€ 

I −εΛ[ ] v ε( ) = P−1A−1ρ
 
d  (3.1.2) 

where 

€ 

Λ is a diagonal matrix with entries 
  

€ 

λ1,λ2,…,λm{ } that are the eigenvalues of 

€ 

C  with 

 

€ 

C = A−1B = PΛP−1 (3.1.3) 

and the columns of 

€ 

P  are the eigenvectors. It is stressed that since 

€ 

C  is not Hermitian, the 

similarity transformation in Eq. (3.1.3) is not unitary; that is, 

€ 

P−1 ≠ Ph , where the superscript 

€ 

h  

denotes the Hermitian conjugate in line space. 
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After straightforward manipulation of Eq. (3.1.1), the field-dependent line shape function in 

Eq. (2.1) can be written as sums over zero and non-zero eigenvalues, 

 

€ 

J ω;ε( ) = Jo + π−1
f j ′ ′ σ j + g j ε − ′ σ j( )
ε − ′ σ j( )2 + ′ ′ σ j

2j
λ j ≠0( )

∑  (3.1.4) 

where the contribution from vanishing eigenvalues is given by 

 

  

€ 

Jo = −π−1 Im
 
d j
* ⋅ A−1ρ

 
d [ ] jj

λ j =0( )

∑ , (3.1.5) 

the weight of the components in the dispersion formula are 

 

  

€ 

f j

g j

 

 
 

 
 

 

 
 

 
 

=

Re

Im

 

 
 

 
 

 

 
 

 
 
λ j
−1  d *( )

T
P

 

 
 

 

 
 

j
⋅ P−1A−1ρ

 
d [ ] j

 
 
 

  

 
 
 

  
, (3.1.6) 

and  

 

€ 

λ j
−1 =σ j = ′ σ j + i ′ ′ σ j  (3.1.7) 

defines the real and imaginary parts of the poles in the 

€ 

ε complex plane. 

3.2 The 

€ 

A ω( ) matrix 

The eigenvalue decomposition requires that 

€ 

A−1 ω( ) exist. This is always the case since 

€ 

A ω( ) 

represents the line shape in the absence of a quasi-static Stark field and has non-zero eigenvalues. 

Furthermore, the interference terms are often neglected making 

€ 

A ω( ) diagonal [5-8]. In any case, 

all explicit inversions are avoided by solving the linear equations 

 

€ 

AC = B  (3.2.1) 

   

€ 

A u = ρ
 
d  (3.2.2) 

   

€ 

P z =  u  (3.2.3) 

by LU factorization or other techniques. For example, Eqs. (3.3.1) and (3.3.2) may be efficiently 

solved with sparse matrix iterative schemes [17]. 

3.3 Efficient Stark field mesh 

An advantage of the method is the dispersion formula in Eq. (3.1.4) that defines the structure 

of 

€ 

J ω;ε( ); 

€ 

′ σ k  locates the center and 

€ 

′ ′ σ k  the half width at half maximum of the 

€ 

kth  resonance in 

€ 

J ω;ε( ). Thus, the number of points in the Stark field integration can be optimized. For example, 
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the minimal set of points necessary to resolve the distribution function 

€ 

P ε( )  is, if necessary, 

supplemented with points to resolve 

€ 

J ω;ε( ) obtained from knowledge of the poles. 

3.4 Operation count 

The operation count determines the relative costs of an algorithm. Although the matrices 

€ 

A  

and 

€ 

B are typically sparse, it is expedient to ignore this property to obtain conservative estimates 

of the relative computational efficiencies. In the following, all counts assume operations 

performed with complex numbers. 

The eigenvalue decomposition requires 

€ 

27m3 operations, which is considerably more 

operations than a single matrix inversion [9]. On the other hand, only 

€ 

m  operations are necessary 

to solve Eq. (3.1.2) at each field value. In addition, the solution of Eqs. (3.2.1) through (3.2.3) 

requires two LU factorizations with 

€ 

m + 2  right hand sides leading to 

€ 

~ 2m3 operations. Thus, 

the total operations of the eigenvector decomposition at each frequency is 

 

€ 

Nv = 29m3 + Nεm (3.4.1) 

to be compared with Eq. (2.6). 

4. Hessenberg method 

The eigenvector decomposition is an expensive procedure that may also suffer from numerical 

instability for ill-conditioned matrices [9]. It is possible to take advantage of the ideas in Sect. 3 

using the numerically stable Hessenberg decomposition together with the QR algorithm [9,12,13]. 

4.1 Hessenberg decomposition 

The Hessenberg decomposition is defined as [9] 

 

€ 

C =QWQh  (4.1.1) 

where 

€ 

Q  is a unitary matrix and 

€ 

W  is an upper Hessenberg matrix (i.e.; 

€ 

Wij = 0  for 

€ 

i > j +1). 

Following manipulations similar to those leading to Eq. (3.1.1) yields 

 
  

€ 

 
d *( )

T
⋅ A −εB[ ]−1ρ

 
d =

 
d *( )

T
Q ⋅
 s ε( ) (4.1.2) 

 
  

€ 

1−εW[ ] s ε( ) = Qhρ
 
d , (4.1.3) 

and the procedure again avoids explicit inversion by using Eqs. (3.2.1) and (3.2.2). 

4.2 Operation count 

The Hessenberg decomposition together with the QR algorithm to obtain eigenvalues and 

unitary transformation involves 

€ 

10m3 operations for a matrix of size 

€ 

m  [9]. On the other hand, 
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the solution of Eq. (4.1.3) using LU factorization takes 

€ 

m2 operations rather than 

€ 

m  as in the 

eigenvector approach [13]. Thus, the total operation count at each frequency, including solving 

Eqs (3.2.1) through (3.2.2), is  

 

€ 

Nw =12m3 + Nεm
2  (4.2.1) 

which is less than 

€ 

Nv  in Eq. (3.4.1) for large 

€ 

m . 

Comparing the operational count of the Hessenberg method to explicit inversion yields from 

Eqs. (2.6) and (4.2.1) 

 

€ 

Nw
Ni

=
12 +

Nε
m

Nε Nε <<m
 →    

12
Nε

<1 (4.2.2) 

since typically 

€ 

Nε ≥ 30  [10,11]. Note that the ratio in Eq. (4.2.2) would be increased by a factor 

of 3 when comparing to a solution of Eq. (2.7) by LU factorization. In that case the Hessenberg 

decomposition approach is approximately comparable in speed, however, there is the benefit in 

the Hessenberg method of advance knowledge concerning the field-dependent resonances. 

4.3 Numerical issues 

Although the matrix 

€ 

A ω( ) is non-singular, it may be ill-conditioned and solving the linear 

systems in Eqs. (3.2.1) and (3.2.2) could lead to inaccurate results. As an alternative, the 

generalized Schur decomposition can be applied to matrices 

€ 

A ω( ) and 

€ 

B. Even though 

€ 

B can be 

a singular matrix, this is a numerically stable algorithm requiring 

€ 

~ 66m3 operations [9]. 

Nevertheless, it may be the best alternative for numerically difficult cases. Note that the 

generalized Schur decomposition provides the eigenvalues and requires 

€ 

m2 operations to solve 

the simultaneous equations at each field value. Incidentally, the Schur decomposition can be 

applied to the matrix 

€ 

C ω( ) leading to similar results as those in Sect. 4.1. Although it is also 

numerically stable, the Schur decomposition requires about twice the number of operations as the 

Hessenberg method [9,12,13]. 

5. Numerical example 

As an example, it is well known that the far line wing of one-electron radiators involves large 

Stark field values. In line shape calculations compromises are often made in order to minimize the 

numerical effort by using a widely spaced field mesh in the tail of the distribution [9,10]. 

Specifically, results for the Stark shifted components of the hydrogen Lyman-α line are plotted in 
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Fig. 1 where the details of the calculation are provided in the Appendix. Briefly, in one case the 

integration over the microfield distribution uses a fixed field mesh while the second calculation 

has a flexible mesh that resolves the resonance in 

€ 

J ω;ε( ) at each frequency. Figure 1 clearly 

shows that the flexible mesh produces a smooth line wing while the fixed mesh yields large 

oscillations beyond a certain detuning frequency. 

The results in Fig. 1 are readily explained by considering the resonant structure of 

€ 

J ω;ε( ). A 

plot of 

€ 

J ω;ε( ) at 

€ 

Δω = 0.001eV  in Fig. 2 shows that the fixed mesh resolves the resonant feature 

at this frequency. Therefore, the resulting profile near line center is numerically accurate. At 

much larger detuning frequencies, however, the fixed mesh fails to resolve the resonance as 

shown in Figs. 3 and 4. As a result, the fixed mesh integration can overestimate or underestimate 

the correct value leading to the oscillatory behavior in Fig. 1. 

The example is intentionally simple and clearly illustrates the advantages of determining the 

resonant structure of the field-dependent line shape. In more complex problems involving multi-

electron radiators the fixed field mesh may be inadequate [5]; however, due to the complexity of 

the spectrum, errors may be difficult to detect. By using the Hessenberg method in Sect. 4 it is 

possible to judiciously add field points and achieve accurate integration without unduly increasing 

the computational effort. Note that the added points may include extension of the integration 

range, which otherwise may be completely missed using a fixed field mesh. 

6. Conclusion 

A robust numerical algorithm for calculating statistical Stark broadened spectral lines without 

introducing approximations or increasing the computational effort was proposed. The method 

evaluates the field-dependent line shape using the Hessenberg decomposition of a field 

independent matrix and the solution to a system of simultaneous linear equations. As a result, the 

number of operations to compute the field-dependent line shape for a diagonal block of size 

€ 

m  at 

each field value is 

€ 

m2 compared to 

€ 

m3 in the conventional approach. 

An important advantage of the proposed method is identification of the resonant structure in 

the field-dependent line shape. Thus, it is possible to optimize the field mesh at each frequency 

when performing the integration over the microfield distribution leading to improved numerical 

accuracy while minimizing the computational effort. 
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Appendix 

Calculation of Lyman-α line 

The Lyman-α spectral line describes a radiative transition between principal quantum 

numbers 

€ 

n = 2  and 

€ 

n =1 in the hydrogen atom. In the present calculations all interactions 

between states with different principal quantum numbers are neglected simplifying the matrix 

algebra. The resulting matrix involving the upper 4 states reduces to block diagonal form: a 2x2 

block plus 2 (1x1) blocks. Therefore, analytical expression can be readily obtained. 

A.1 Line shape function 

The line shape function can be written in the form, 

 

€ 

I ω( ) = S 2I 1( ) ω( ) + I o( ) ω( ){ } (A.1.1) 

where 

€ 

S  is the total line strength. The first term is the area normalized profile for the unshifted 2p 

states with magnetic quantum number 

€ 

m =1 that are not affected by the quasi-static Stark field, 

 

€ 

I 1( ) ω( ) =
γ ω( ) π

Δω + γ 2 ω( )
 (A.1.2) 

The second term is the contribution from the 2s and 2p states with 

€ 

m = 0 that couple through the 

Stark field, 

 

€ 

I o( ) ω( ) = dε
o

∞
∫ P ε( )J o( ) ω;ε( )  (A.1.3) 

with 

 

  

€ 

J o( ) ω;ε( ) = −π−1 Im
Δω + 3iγ ω( )

Δω + iγ ω( )[ ] Δω + 3iγ ω( )[ ] + 3eaoε [ ]2
 
 
 

  

 
 
 

  
 (A.1.4) 

where 

€ 

ao is the Bohr radius and 

€ 

e  the elemental electric charge. 

A.2 Poles of 

€ 

J o( ) ω;ε( ) 

The eigenvector decomposition can be applied to the Lyman-α example. For the 

€ 

m = 0 block, 

Eqs. (2.3)-(2.5) yield 

 

€ 

A ω( ) =
Δω + 3iγ 0

0 Δω + iγ
 

 
 

 

 
  (A.2.1) 

and 
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€ 

B =
3eao


0 1
1 0
 

 
 

 

 
  (A.2.2) 

leading to 

 
  

€ 

C = A−1B =
3eao

−1

Δω2 − 3γ 2 + 4iΔωγ

0 Δω + iγ( )
Δω + 3iγ( ) 0

 

 
 

 

 
  (A.2.3) 

The eigenvalues of 

€ 

C  are given by 

 
  

€ 

λ ω( ) = ±
3eao

 Δω + iγ( ) Δω + 3iγ( )
 (A.2.4) 

Thus, from Eq. (3.1.7) the poles of 

€ 

J o( ) ω;ε( ) are  

 
  

€ 

σ ω( ) = ±


3eao
Δω2 − 3γ 2( )

2
+16Δω2γ 2

 
 
 

 
 
 

1
4
cos

θ ω( )
2

 

 
 

 

 
 + isin

θ ω( )
2

 

 
 

 

 
 

 
 
 

 
 
 

 (A.2.5) 

with 

 

€ 

θ ω( ) = Arg Δω2 − 3γ 2 + 4iΔωγ[ ]  (A.2.6) 

As an example, consider 

€ 

Δω = 0. Then 

€ 

θ Δω = 0( ) = −π  leading to 
  

€ 

σ Δω = 0( ) = ±iγ 3eao . 

A.3 Calculations 

The present calculations used a standard approximation for the width, 

€ 

γ ω( ) , [18] and the 

necessary reduced dipole matrix elements are readily available [19]. For simplicity, the 

integration used the Holtsmark microfield distribution [3] with a trapezoidal rule. The fixed mesh 

integration used 

€ 

Nε = 60 field points in a predetermined grid [20]. No systematic effort was made 

to optimize the mesh. Instead, the flexible mesh complemented the fixed grid with 7 uniformly 

spaced points centered at the peak of the resonance with spacing set equal to the width 

€ 

γ ω( ) . Both 

the location and width are obtained from Eqs. (A.2.5) and (A.2.6). This flexible mesh reduced the 

oscillations in the line wing to less than ±10% compared to ±100% with the fixed mesh. 
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Figure Captions 

Fig. 1 Stark shifted components contribution to the hydrogen Lyman-α profile at 

€ 

T =1eV  and 

€ 

Ne =1016cm−3 versus detuning frequency. Calculation using a fixed mesh (solid) and with 

a flexible field mesh to resolve the resonances (dash). 

Fig. 2 

€ 

J o( ) Δω;ε( )  for the shifted Stark components of the hydrogen Lyman-α line at conditions of 

Fig. 1 versus Stark field in units of the Holtsmark field 

€ 

εH  [3] at 

€ 

Δω = 0.001eV . The solid 

dots represent calculations on a fixed field mesh. 

Fig. 3 Same as Fig. 2 at 

€ 

Δω = 0.00475 eV . The dashed line indicates the error using the 

trapezoidal rule with the fixed mesh. 

Fig. 4 Same as Fig. 3 at 

€ 

Δω = 0.00525 eV . 
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Fig. 1 Stark shifted components contribution to the hydrogen Lyman-α profile at 

€ 

T =1eV  and 

€ 

Ne =1016cm−3 versus detuning frequency. Calculation using a fixed mesh (solid) and with 

a flexible field mesh to resolve the resonances (dash). 
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Fig. 2 

€ 

J o( ) Δω;ε( )  for the shifted Stark components of the hydrogen Lyman-α line at conditions of 

Fig. 1 versus Stark field in units of the Holtsmark field 

€ 

εH  [3] at 

€ 

Δω = 0.001eV . The solid 

dots represent calculations on a fixed field mesh. 
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Fig. 3 Same as Fig. 2 at 

€ 

Δω = 0.00475 eV . The dashed line indicates the error using the 

trapezoidal rule with the fixed mesh. 
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Fig. 4 Same as Fig. 3 at 

€ 

Δω = 0.00525 eV . 

 


